Arsip Blog

RADIASI TERMAL

Jika suatu benda ditempatkan dalam pengurung, dan suhu pengurung lebih rendah dari pada suhu benda, maka suhu benda tersebut akan turun, sekalipun ruang dalam pengurung tersebut hampa. Proses pemindahan panas yang terjadi hanya semata karena benda suhu dan tanpa bantuan zat perantara (medium), disebut perpindahan   panas radiasi

Ditinjau dari gelombang elektromagnetik, energi radiasi dibawa  oleh gelombang elektomagnetik .Ada banyak jenis radiasi,   yaitu dari radiasi sinar gama ,sinar x, radiasi termal hingga radiasi gelombang radio (dari spektrum panjang gelombang pendek sampai yang berpanjang gelombang panjang).

Sedang radiasi termal, energi pancarannya adalah ditentukan berdasar dari suhu benda tersebut.

Daerah spektrum panjang gelombang radiasi termal adalah dari 0 , 1  sampai dengan 100 mikron

Radiasi matahari juga merupakan radiasi termal dengan daerah panjang gelombang khusus yaitu 0, 25 sampai dengan 3 mikron.

Radiasi Benda Hitam

Benda hitam adalah idealisasi benda yang pada suhu berapapun, memancarkan atau menyerap seluruh radiasi pada panjang gelombang tertentu manapun (disebut Radiator sempurna).

Daya pancar benda hitam tergantung dari suhu dan panjang gelombangnya.

Pengertian Panas,Panas Sensibel dan Panas Laten

Panas adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnyaberubah.Ukuran jumlah panas dinyatakan dalam notasi British Thermal Unit (BTU). Air digunakan sebagai standar untuk menghitung jumlah panas karena untuk menaikkantemperature 1o F untuk tiap 1 lb air diperlukan panas 1 BTU.

Panas jenis suatu benda artinya jumlah panas yang diperlukan benda itu agar temperaturnya naik 1o F.

Panas sensible adalah panas yang menyebabkan terjadinya kenaikan/penurunan temperatur, tetapi phasa (wujud) tidak berubah.

Panas laten adalah panas yang diperlukan untuk merubah phasa (wujud) benda, tetapi temperaturnya tetap.

Panas laten penguapan(latent heat of vaporization) adalah jumlah panas yang harus ditambahkan kepada zat (cair)pada titik didihnya sampai wujudnya berubah menjadi uap seluruhnya pada suhu yang sama.

Panas laten pengembunan (latent heat of condensation) adalah jumlah panas yang harusdibuang/dikeluarkan oleh zat (gas/uap) pada titik embunnya, untuk mengubah wujud zat darigas menjadi cair pada suhu yang sama.

Panas laten pencairan/peleburan (latent heat of fusion) adalah jumlah panas yangharus ditambahkan kepada zat (padat) pada titik leburnya sampai wujudnya berubah menjadicair semuanya pada suhu yang sama.

Panas laten pembekuan (latent heat of solidification) adalah jumlah panas yang harus dibuang/dikeluarkan oleh zat (cair) pada titik bekunya untuk mengubah wujudnya dari cair menjadi padat pada suhu yang sama.

Tabel Panas Laten

Tabel

berikut menunjukkan besar panas laten dan perubahan suhu fase dari beberapa cairan umum dan gas.

(sumber :http://www.scribd.com/doc/49093686/ ,wikipedia)

Heat Exchanger Tipe Shell and Tube

Menurut Changel (1997), hampir pada semua heat exchanger , berpindahnya  panas di dominasi oleh konveksi dan konduksi dari fluida panas ke fluida dingin, di mana keduanya di pisahkan oleh dinding. Perpindahan panas secara konveksi sangat di pengaruhi oleh bentuk geometri heat exchanger dan tiga bilangan tak berdimensi., yaitu bilangan Reynolds, bilangan Nusselt dan bilangan Prandtl fluida. Besar konveksi yang terjadi dalam suatu doble-pipe heat exchanger akan berbeda dengan cross-flow heat exchanger atau shell-and-tube heat exchanger atau compact heat exchanger atau plate heat exchanger untuk beda temperature yang sama. Sedang besar ketiga bilangan tak berdimensi tersebut tergantung pada kecapatan aliran serta sifat fluida yang meliputi massa jenis, viskositas absolute, panas jenis dan konduktivitas panas.

Suatu hukum kesetimbangan panas, dimana panas yang masuk sama dengan panas yang di lepaskan. Persamaannya dapat di tulis sebagai berikut:

Persamaan laju perpindahan panas dengan metode LMTD (log mean temperature diferance) sebagai berikut (incorpera, 1996):

q = U . A . TLMTD………………………………………………………….          (2)

dengan:

q = kalor yang di pindahkan (Watt)

U = Koefesien perpindahan kalor menyeluruh (W/m2K)

A = Luas permukaan perpindahan kalor (m2)

TLMTD= beda temperatur rata-rata (K)

Beda temperature rata-rata parallel flow:

Tipe-Tipe Dasar Penukar Panas (Types of Heat Exchangers)

Tipe penukar panas cangkang-dan-pipa yang paling sederhana ditunjukkan dalam Gb.2-1. Alat ini terdiri dari sebuah pipa yang terletak konsentrik (sesumbu) di dalam pipa lainnya yang merupakan cangkang untuk susunan ini. Salah satu fluidanya mengalir melalui pipa-didalamnya, fluida lainnya mengalir melalui cincin (anulus) yang terbentuk di antara pipa-dalam dan pipa-luar. Karena kedua aliran melintasi penukaran panas hanya sekali, maka susunan ini disebut penukar panas satu lintas (single-pass; lintas tunggal). Jika kedua fluida itu mengalir dalam arah yang sama, maka penukar panas ini bertipe aliran-searah (parallel-flow; Gleichstrom-Bahasa Jerman; gelijkstroom-Bahasa Belanda; juga dikenal dengan istilah aliran sejajar); jika fluida-fluida tersebut mengalir dalam arah berlawanan, maka penukar panas ini bertipe aliran-lawan (counterflow; Gegenstrom-Jerman; tegenstroom-Belanda). Pada umumnya beda suhu antara fluida yang panas dan yang dingin tidak konstan sepanjang pipa, dan laju aliran panasnya akan berbeda-beda dari penampang ke penampang. Maka dari itu guna menentukan laju aliran panas kita harus mempergunakan suatu beda suhu rata-rata yang sesuai, seperti ditunjukkan dalam gambar 2-1.

Bila kedua fluida yang mengalir sepanjang permukaan perpindahan-panas bergerak dalam arah saling tegak-lurus, maka penukar panasnya bertipe aliran-lintang (cross flow). Ada tiga kemungkinan susunan penukan panas tipe ini. Dalam hal yang pertama masing-masing fluida takbercampur (unmixed) waktu melintasi melalui penukar panas, dan oleh akrena itu suhu fluida-fluida yang meninggalkan penampang pemanas tidak seragam, pada satu sisi lebih panas daripada sisi lainnya. Pemanas dari tipe pelat-datar (Gb. 2-2), suatu rancang-bangun yang dipergunakan untuk regenerator turbin guna memperoleh kembali energi gas buang, atau radiator mobil, mendekati tipe penukar panas ini. Dalam hal yang kedua, salah satu fluidanya takbercampur sedangkan fluida yang lainnya bercampur sempurna waktu mengalir melalu penukar panas. Suhu aliran yang bercampur akan seragam pada setiap penampang dan hanya berbeda-beda dalam arah aliran. Contoh tipe ini adalah pemanas udara aliran-lintang yang ditunjukkan secara skematik dalam Gb. 2-3. Udara yang mengalir diluar berkas pipa bercampur, sedangkan gas panas di dalam pipa-pipa terbatasi dan karenanya takbercampur. Dalam hal yang ketiga, kedua fluida bercampur (mixed) waktu mengalir melalui penukar panas; jadi, suhu kedua fluida akan seragam pada penampang dan hanya berbeda-beda dalam arah aliran. Susunan jenis ini kurang penting dari pada kedua susunan lainnya dan tidak akan dibahas disini.

Guna menaikkan luas permukaan perpindahan-panas efeklif per volume-satuan, kebanyakan penukar panas komersial menggunakan lebih daripada satu kali lintas melaui pipa-pipa, dan fluida yang mengalir di luar pipa-pipa di dalam cangkang diarahkan bolak-balik dengan sarana sekat-sekat (baffles). Gambar 2-4 menunjukkan irisan sebuah penukar panas dengan dua lintas pipa dan satu lintas cangkang bersekat-sekat lintang. Sekat-sekatnya dari tipe segmen. Tipe sekat ini dan tipe-tipe sekat yang khas lainnya ditunjukkan dalam Gb. 2-5. Dalam penukar panas bersekat, pola aliran di sisi cangkang adalah rumit. Seperti ditunjukkan dengan tanda-tanda panah, kadang-kadang aliran tegak-lurus pada pipa, kadang-kadang sejajar dengan pipa.

Penukar panas yang digambarkan dalam Gb. 2-4 mempunyai pelat-pipa (tube plate) yang terpasang mati di tiap ujung dan pipa-pipa dilaskan atau diregangkan (ex­panded) kedalam pelat-pelat itu. Jenis konstraksi ini biaya awalnya terendah, tetapi hanya dapat digunakan untuk beda suhu yang kecil antara fluida yang panas dan yang dingin karena tidak ada sarana untuk mencegah terjadinya tegangan termal yang di sebabkan oleh pemuaian yang berbeda antara pipa-pipa dan cangkang.

Sifat yang kurang menguntungkan lainnya adalah tidak dapatnya berkas pipa dicabut untuk dibersihkan. Kekurangan-kekurangan ini dapat diatasi dengan mengubah rancang-bangun dasarnya seperti ditunjukkan dalam Gb. 2-6. Dalam susunan ini satu pelat-pipa terpasang mati (fixed) tetapi pelat lainnnya dibautkan pada suatu tutup kepala-mengambang (floating head) yang memungkinkan berkas pipa bergerak relatif terhadap cangkang. Pelat-pipa-mengambang diklem di antara kepala-mengambang dan sebuah flens sehingga dimungkinkan untuk mengeluarkan  berkas  pipa untuk dibersihkan. Penukar panas yang ditun­jukkan dalam Gb.2-6 mempunyai satu lintas cangkang dan dua lintas pipa.

Untuk penerapan-penerapan khusus tertentu, seperti regenerator untuk turbin gas pesawat terbang atau mobil, laju perpindahan-panas per berat-satuan dan per volume-satuan menjadi perhatian yang utama. Penukar panas yang ringkas serta ringan untuk penggunaan ini telah diteliti oleh Kays dan London (1). Suatu rancang-bangun yang khas ditunjukkan dalam Gb. 2-7.

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 346 pengikut lainnya.